Friday, May 31, 2019
Introduction to the Scientific Method :: essays research papers
Introduction to the Scientific MethodThe scientific method is the process by which scientists, collectively and over time, endeavor to build an accurate (that is, reliable, consistent and non-arbitrary) representation of the world. Recognizing that personal and cultural beliefs influence both our perceptions and our interpretations of natural phenomena, we aim through the use of standard procedures and criteria to minimize those influences when developing a theory. As a famous scientist once said, "Smart people (like smart lawyers) can come up with very good explanations for mistaken points of view." In summary, the scientific method attempts to minimize the influence of bias or prejudice in the experimenter when testing an hypothesis or a theory. I. The scientific method has four locomote1. Observation and description of a phenomenon or group of phenomena. 2. Formulation of an hypothesis to explain the phenomena. In physics, the hypothesis often takes the form of a causal mechanics or a mathematical relation. 3. Use of the hypothesis to predict the existence of other phenomena, or to predict quantitatively the results of new observations. 4. Performance of experimental tests of the predictions by several independent experimenters and properly performed experiments. If the experiments bear out the hypothesis it may come to be regarded as a theory or law of disposition (more on the concepts of hypothesis, model, theory and law below). If the experiments do not bear out the hypothesis, it must be rejected or modified. What is key in the description of the scientific method just given is the predictive power (the ability to get more out of the theory than you put in see Barrow, 1991) of the hypothesis or theory, as tested by experiment. It is often said in science that theories can never be proved, only disproved. There is always the possibility that a new observation or a new experiment will conflict with a long-standing theory. II. Testing hypotheses As just stated, experimental tests may dealer either to the confirmation of the hypothesis, or to the ruling out of the hypothesis. The scientific method requires that an hypothesis be ruled out or modified if its predictions are all the way and repeatedly incompatible with experimental tests. Further, no matter how elegant a theory is, its predictions must agree with experimental results if we are to believe that it is a legitimate description of nature. In physics, as in every experimental science, "experiment is supreme" and experimental verification of hypothetical predictions is absolutely necessary.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.